64 x 64 Vortex L-band Combining Switch Matrix / Router Low noise \& enhanced RF performance

Typical applications:

- Live news \& sport traffic for larger teleports.
- High capacity signal monitoring of satellite traffic.
- RF content acquisition for TVRO \& IPTV headends.
- Remote controlled unmanned satcom sites.

ETL's Vortex Extended L-band matrix has been redesigned to now offer an extremely compact form factor, and enhanced RF performance. Vortex uses leading edge technology switching cards, giving excellent RF performance in a compact chassis. The VTXC-101 benefits from a low noise figure.

850-2150 MHz
operating frequency range
Improved RF Performance including especially low noise figure.

Expansion in blocks of 16 or with additional matrix modules for larger systems

Resilience from dual redundant power supplies \& CPU modules
Minimal impact from failure with hot-swap RF cards, power supplies, CPU \& fans
Compact up to 64 inputs \& 64 outputs housed in a 5 U high chassis

Local control \& monitoring via front panel capacitive touchscreen

Secure

Communications with SNMPv3, HTTPS
Remote control \&
monitoring via RJ45 Ethernet port with SNMPv3 \& web browser interface

Self diagnostics with continuous monitoring of amplifiers, CPU's \& PSU's

Note: Rear image shows distributive model

ETL Systems
New technologies
in RF distribution

Technical specifications and operating parameters

General Parameters						Environmental					
Capacity		64 inputs x 64 outputs. (Can be configured in steps of 16 from 16×16 to 64×64 in symmetric and asymmetric configurations).				Operating Temperature		0 to $45^{\circ} \mathrm{C}$			
Routing		Combining, non-blocking		Many inputs can be routed to each output		Gain Stability versus Temperature		$0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$			
		Location	Indoor use only								
Frequency Range				$850-2150 \mathrm{MHz}$	Storage Temperature		$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$				
Switching Time		$<50 \mathrm{~ms}$				From receipt of a command to implementation of path change		Humidity		20 to 90\% non-condensing	
		Altitude	operational	10,000 ft AMSL (above mean sea level)							
Input RF Power			+20dBm		Absolute maximum		storage	30,000 ft AMSL (above mean sea level)			
RF Parameters						Power					
						PSU Power		$85-264 \mathrm{Vac} 50-60 \mathrm{~Hz}$	Fused 2A		
RF Connectors \& Impedances		50Ω SMA	$50 \Omega \mathrm{BNC}$	75Ω BNC	75Ω F-type	AC Consumption		350W	Max. consumption at steady state		
Gain (Typical, mean across band)		$0 \pm 1 \mathrm{~dB}$	Reliability								
Gain Flatness	Full band	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	PSU		Dual redundant \& alarmed Hot-swap			
	Any 36MHz	$\pm 0.30 \mathrm{~dB}$	$\pm 0.30 \mathrm{~dB}$	$\pm 0.50 \mathrm{~dB}$	$\pm 0.50 \mathrm{~dB}$	CPU		Dual redundant Hot-swap			
Input Return Loss	Typical	20 dB	20 dB	14 dB	14 dB						
	Minimum	12 dB	12 dB	8 dB	8 dB	Input Cards		Hot-swap			
Output Return Loss	Typical	20 dB	20 dB	14 dB	14 dB	Output Cards		Hot-swap			
						Matrix Cards		Hot-swap			
	Minimum	14 dB	12 dB	8 dB	8 dB	MTTR		20 minutes 15 minutes to retrieve spare part \& 5 minutes to replace			
Isolation (Minimum between any two ports)	I/P - I/P	75 dB									
	O/P - O/P	75 dB				MTBF (H	Chassis	>250,000 chassis excludes HMI \& RF cards			
	I/P - O/P	60 dB					Switch Card	>250,000			
Noise Figure (Typical, with one input routed to one output)	Typical	12 dB					Divider Card	>300,000			
						Matrix Card	>100,000				
	Maximum	16 dB					System Control \& Monitoring				
1 dB GCP Output power.		Typ. -3 dBm				Local Control \& Monitoring		Via Front Panel HMI capacitive touchscreen			
		Remote Control \& Monitoring		Ethernet via RJ45, 10BaseT/100BaseTx ETL TCPIIP protocol SNMPv3 HTTPS Built-in Web Server							
OIP3 3rd order intercept point, output power	Typical			12 dBm							
	Minimum	10 dBm				Alarms		Via Ethernet (RJ45)			
OIP2 2nd order intercept point, output power	Typical	24 dBm				Physical					
	Minimum	20 dBm				Dimensions		5 U high $\times 550 \mathrm{~mm}$ deep $\times 19$ " wide			
Group Delay		$\leq 1 \mathrm{~ns}$ Variation across the operational bandwidth.				Weight		40 kg			
		Colour	RAL9003 - White (semi-matte)								

Note 1: The specification is subject to regular reviews and will be updated from time to time as part of our continuing product development and improved spec accuracy.
Note 2: Operation beyond the quoted limits stated above may cause instantaneous and permanent damage.
ETL SYSTEMS LIMITED
Coldwell Radio Station
Madley
Hereford
England HR2 9NE

TELEPHONE
FACSIMILE
+44 (0)1981 259020
+44 (0)1981 259021

EMAIL
info@etlsystems.com

WEB

www.etlsystems.com

RơHS
COMPLIANT

