StingRay RF over Fibre 200 series L-band modules with -20dB monitor ports \& $13 / 18 \mathrm{~V}$ LNB powering \& 22 kHz tone (on TX module)

For use in SRY Redundant chassis

The StingRay 200 Series of L-band RF over fibre chassis are designed to give compact fibre links of up to 10 km (Link budget 4 dB). The transmit modules benefit from a high and wide dynamic range with automatic link optimisation ensuring high quality L-band transmission.

Typical applications:

- Ku-band and Ka-band ready for HTS applications
- Distribution of comms traffic across site with minimal loss
- General satcoms- teleports, video head-ends, TVRO
- Compact solution for small quantity links such as tactical HQ
- A resilient solution for satellite teleports with transition distances up to 10 km

Fibre Modules

850-2450 MHz
operating frequency range
TX \& RX module options to transmit and receive signals up to 10 km
-20dB Monitor port to
measure input signal levels

LNB Powering $13 / 18 \mathrm{~V}$ on TX
modules only

High isolation between modules for signal quality

Chassis Options

Compact indoor \& outdoor chassis options Models SRY-C209-2U \& SRY-ODU209 onlyRemote control \& monitoring via RJ45
Ethernet port with SNMP \& web browser interface

Resilience from dual redundant hot-swap power supplies, hot-swap fibre modules \& fans

Local control \& monitoring via front panel push buttons \& display

RF Parameters (TX \& RX Modules)						
Model Number		SRY-TX-L1-291-xxxx			SRY-RX-L1-292-xxxx	
		Module only Specification		Redundant System Specification (inside C209)	Module only Specification	Redundant System Specification (inside C209)
Frequency Range		850 to 2450 MHz (Extended L-band)				
Flatness	$850-2150 \mathrm{MHz}$	$\pm 1.7 \mathrm{~dB}$ (Test condition: 10 km fibre, fixed gain mode, -10 dBm RF i/p power,-10 dBm RF o/p total power)		$\pm 1.6 \mathrm{~dB}$ (Test condition: 10km fibre, fixed gain mode, -10 dBm RF i/p power,-10 dBm RF o/p total power)	$\pm 1.7 \mathrm{~dB}$ (Test condition: 10 km fibre, fixed gain mode, -10 dBm RF i/p power,- -10 dBm RF o/p total power)	$\pm 1.6 \mathrm{~dB}$ (Test condition: 10 km fibre, fixed gain mode, -10 dBm RF i/p power,-10 dBm RF o/p total power)
	$850-2450 \mathrm{MHz}$	$\pm 2.2 \mathrm{~dB}$ (Test condition: as above)		$\pm 1.9 \mathrm{~dB}$ (Test condition: as above)	$\pm 2.2 \mathrm{~dB}$ (Test condition: as above)	$\pm 1.9 \mathrm{~dB}$ (Test condition: as above)
	Any 36 MHz	$\pm 0.25 \mathrm{~dB}$ (Test condition: as above)				
Output AGC Flatness		-			$\pm 2.0 \mathrm{~dB}$ full band (lnput -10 to -40 dBm)	$\pm 3.0 \mathrm{~dB}$ full band (Input -10 to -40 dBm)
AGC Mode		Once AGC level set, gain can be fixed if required			Once AGC level set, gain can be fixed if required	
Return Loss (50Ω SMA)	Typical	18 dB		16 dB	18 dB	16 dB
	Minimum		12 dB	10dB	12dB	10dB
Monitor Port		$-20 \mathrm{~dB} \pm 3 \mathrm{~dB}$ (Mounted on module)				
OIP3		17 dBm typical, 14 dBm worst case (Test condition: 1 m fibre 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)		12 dBm typical, 9 dBm worst case (Test condition: 1 m fibre 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)	17 dBm typical, 14 dBm worst case (Test condition: 1 m fibre 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)	12 dBm typical, 9 dBm worst case (Test condition: 1 m fibre 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)
CNR (in any 36 MHz)		-50 dB typical, -45 dB worst case (Test condition: 1 m fibre, -10 dBm RF i/p power, -10 dBm RF o/p total power)		-45 dB typical, -40 dB worst case (Test condition: 1 m fibre, - 10 dBm RF i/p power,-10 dBm RF o/p total power)	-50 dB typical, -45 dB worst case (Test condition: 1 m fibre, -10 dBm RF i/p power,-10 dBm RF o/p total power)	-45 dB typical, -40 dB worst case (Test condition: 1 m fibre, -10 dBm RF i/p power,-10 dBm RF o/p total power)
Noise Figure		12 dB typical, 15 dB worst case (Test condition: 1 m fibre, -50 dBm RF i/p power, -10 dBm o/p power)		13 dB typical, 16 dB worst case (Test condition: 1 m fibre, -50 dBm RF i/p power, - 10 dBm o/p power)	12 dB typical, 15 dB worst case (Test condition: 1 m fibre, -50 dBm RF i/p power, -10 dBm o/p power)	13 dB typical, 16 dB worst case (Test condition: 1 m fibre, -50 dBm RF i/p power, -10 dBm o/p power)
Group Delay Variation		2 ns over full band, 1ns over any 36 MHz				
SFDR		$112 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ typical, $108 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ minimum (Test condition: 1 m fibre, 10 dB gain, 22 dBm tones at 2150 and 2152 MHz)		$108 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ typical, $104 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ minimum (Test condition: 1 m fibre, 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)	$112 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ typical , $108 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ minimum (Test condition: 1 m fibre, 10 dB gain, -22 dBm tones at 2150 and 2152 MHz).	$108 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ typical , $104 \mathrm{~dB} / \mathrm{Hz}^{2 / 3}$ minimum (Test condition: 1 m fibre, 10 dB gain, -22 dBm tones at 2150 and 2152 MHz)
RF Input Signal Range		Input: -60 to -10 dBm (total power)		Input: -55 to -10 dBm (total power)	Output: -30 dBm to -10dBm (total power)	Output: -32 dBm to -12dBm (total power)
10 MHz level at output		N/A			-	
Max RF Input		16 dBm total power (Damage level, NOT operational)				
Laser Type		DFB \quad Optical isolator for improved performance			-	
Optical Wavelength		$1310 \pm 10 \mathrm{~nm}$			$1100 \pm 1650 \mathrm{~nm}$ (optimised for 1310 nm \& 1550 nm)	
Optical Power		Output: $4.5 \pm 2.5 \mathrm{dBm}$ (3.8 dBm typical)			In: 0 to 4.5 dBm (Max. 10 dBm)	
Power Consumption		6 W typical		See C209 Chassis spec.	4W typical	
LNB Power		N/A			-	
MTBF (module)		>200,000 hours			>250,000 hours	
Connector Options		RF connectors: SMA 50Ω - 55			Optical connectors: FA - FC/APC or SA - SC/APC	
Operating Temperature		$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (see C209 chassis specifications for the redundant system specification)				
Storage Temperature		$-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ (see C 209 chassis specifications for the redundant system specification)				
Location		Indoor use-outdoor use as part of ETL ODU only (see C209 chassis specifications for the redundant system specification)				
Humidity		20 to 90% non-condensing. Relative humidity (see C209 chassis specifications for the redundant system specification)				
Altitude		10,000 ft Above Mean Sea Level (AMSL) operational, $30,000 \mathrm{ft} \mathrm{AMSL} \mathrm{storageltransport} \mathrm{(see} \mathrm{C209} \mathrm{chassis} \mathrm{specifications} \mathrm{for} \mathrm{the} \mathrm{redundant} \mathrm{system} \mathrm{specification)}$				
Weight		0.35 kg typical (see C 209 chassis specifications for the redundant system speciification)				
Dimensions		$87.8 \times 18 \times 150 \mathrm{~mm}$				
Spec. issue		1.6				

These modules can only be housed in indoor chassis Model SRY-C209-2U and outdoor chassis Model ODU209. Please see separate datasheet for 200 series chassis options.

ETL SYSTEMS LIMITED
Coldwell Radio Station Madley Hereford England HR2 9NE

TELEPHONE

+44 (0)1981 259020
FACSIMILE
+44 (0)1981 259021
EMAIL
info@etlsystems.com

